
Intents in Natural Language Processing
Intent Creation using the IIUSA Intent Editor
Miles Murdocca (IIUSA)
murdocca@iiusatech.com
http://milesmurdocca.com

Object Pascal editor by Juan Jiménez
Python editor by Miles Murdocca

Synopsis
An intent is an action that a chatbot user wants to perform: book a flight, order a pizza,
get assistance with a task. Intents are used pervasively in user input processing for
chatbots and in natural language processing (NLP) tasks.

Figure 1: Chatbot conversation flow.

There are several chatbot services that help the user create a chatbot through a
graphical user interface (GUI). For those of us who create our own chatbots, we need a
tool to create and edit our own pool of intents. A simple spreadsheet can work in lieu of
a software tool, but is tedious and prone to error.

This paper covers the freely available IIUSA Intent Editor and how to integrate the
JavaScript Object Notation (JSON) intent files into a conversational chatbot.

Topics covered:

1) Rule-based static intents
2) Dynamic intents
3) Matching user input to intents

mailto:murdocca@iiusatech.com
http://milesmurdocca.com/
https://en.wikipedia.org/wiki/JSON

4) Representing intents
5) IIUSA Intent Editor
6) Putting it all together: working example
7) Conclusion

1. Rule-based static intents
In a simple scenario, a chatbot matches user intents and responds according to a set of
rules. The responses can be simple one-turn text relationships:

User: What is the capital of Indonesia?

Bot: Jakarta

These simple one-turn (no memory of previous inquiries) intents can be extended with
simple statically resolved substitutions, in which the substitution choices are stored in a
table:

User: What is the capital of {{PlaceName}}

Bot: {{PlaceLookup(%%PlaceName%%)}}

Country Capital Continent Languages

India New Delhi Asia Hindi and English

Indonesia Jakarta Asia Indonesian

USA Washington, D.C. North America American English

China Beijing Asia Mandarin

Russia Moscow Europe and Asia Russian

England London Europe English

Peru Lima South America Spanish and Aymara

Figure 2: Lookup table for PlaceName substitutions.

The User input and the substituted Bot output shown farther above are derived from the
lookup table.

2. Dynamic intents
Building on our lookup table capability, a next-level bot might implement dynamic one-
turn responses that change based on changing situations. For example, we can
represent the day of the week in a coded format such as:

{lambda x: day_of_week()}

and then have our chatbot automatically execute the so-called lambda function when a
trigger element matches, to make the substitution:

User: What day is it?

Bot: Wednesday

https://en.wikipedia.org/wiki/Anonymous_function

For this, we use a different kind of table for lambda functions, shown in Figure 3:

Trigger Name Substitution

which-day {lambda x: day_of_week()}

do-a-search {lambda x: google(x)}

which-is-larger {lambda x,y: max(x,y)}

are-you-happy {lambda x: “yes”}

[...]

Figure 3: Lookup table including a mix of lambda functions.

Now given our pool of static and dynamic intents, how can our chatbot decide which
intent is the best match?

3. Matching user input to intents
We want to send the user the best reply, and our approach is to make the best match
between what the user types or utters and our intent. So how does our bot decide?

One possibility is to calculate similarity based on the Levenshtein distance, also known
as the edit distance. The Levenshtein distance is a measure of the fewest character
changes needed to convert the subject word into a word in the vocabulary, and is often
used in spelling correction. It is named after the Soviet mathematician Vladimir
Levenshtein, who considered this distance in 1965.

Figure 4: An example of Levenshtein distance.

This can work well for word correction, but not so well for phrase matching which might
be missing an entire word or have an extraneous word.

For our purpose of phrase matching, we use cosine similarity to determine how well the
user’s inquiry matches an entry in our intent pool. The goal is not to find the best
response to the user’s input, but to find the best match between the user’s inquiry and
an intent our bot knows about, and then return the response for that match.

https://en.wikipedia.org/wiki/Levenshtein_distance
https://www.machinelearningplus.com/nlp/cosine-similarity/

Cosine Similarity
We can convert our phrases into numerical vectors with a technique known as term
frequency – inverse document frequency (TF–IDF). This is a transformation applied to
text strings to get two vectors that represent the two strings.

Term Frequency: is a scoring of the frequency of the word in the current document.
TF = (Number of times term t appears in a document)/(Number of terms in the
document)

Inverse Document Frequency: is a scoring of how rare the word is across documents.
IDF = 1+log(N/n), where N is the number of documents and n is the number of
documents a term t has appeared in.

The TF-IDF weight is more generally used in information retrieval and text mining. It is a
statistical measure that evaluates how important a word is to a document in a collection
(also known as a corpus).

We can then obtain the Cosine similarity of any pair of vectors v1 and v2 by taking their
dot product and then dividing that by the product of their norms (which normalizes the
vectors in a mathematical sense):

CosineSimilarity(v1, v2) = DotProduct(v1, v2) / ||v1|| * ||v2||

As a regular formula, in which A = v1 and B = v2:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑐𝑜𝑠(𝜃) =
𝑨 ⋅ 𝑩

||𝑨|| ||𝑩||
 =

∑𝑛
𝑖=1 𝐴𝑖𝐵𝑖

√∑𝑛
𝑖=1 𝐴𝑖

2√∑𝑛
𝑖=1 𝐵𝑖

2

This yields the cosine of the angle θ between the vectors. This allows us to find the
similarity between two phrases represented as vectors v1 and v2.

Figure 4 shows a simplified three dimensional space for illustration. In practice, the
vector space has as many dimensions as there are unique words in all sentences
combined. So if our vocabulary has 1000 words, then there will be 1000 dimensions in
the vector space.

In the case of information retrieval, the cosine similarity of two phrases will range from 0
to 1, since the term frequencies cannot be negative. Likewise the angle between two
term frequency vectors cannot be greater than 90°.

Figure 4: The vector space model and cosine similarity.

A good discussion on cosine similarity:
https://towardsdatascience.com/calculating-string-similarity-in-python-276e18a7d33a

4. Representing intents
We created a pool of intents:

https://iiusatech.com/downloads/intent-editor/intents.json

The intents are in JSON format depicted below, and you can ignore the syntax if you
use the IIUSA Intent Editor:

{

 "intents": [

 {

 "tag": "name",

 "patterns": [

 "what's your name?",

 "what is your name",

 "what are you called?",

 "who are you?"

],

 "responses": [

 "My name is Reddy",

 "I'm Reddy",

 "I am Reddy",

 "My name is Reddy"

]

 },

 {

 "tag": "ruhuman",

 "patterns": [

 "Are you real?",

 "Are you human",

https://towardsdatascience.com/calculating-string-similarity-in-python-276e18a7d33a
https://iiusatech.com/downloads/intent-editor/intents.json

 "Are you a robot?",

 "Are you a machine?"

],

 "responses": [

 "I am as real as Data gets.",

 "I am kinda \"choose your own adventure.\"",

 "I aim to be."

]

 },

 {

 "tag": "time",

 "patterns": [

 "What time is it?",

 "Do you know the time?",

 "Do you have the time?"

],

 "responses": [

 "Check your monitor.",

 "It's the same time as it was yesterday at this time.",

 "All time is relative."

]

 }

]

}

The intents have three parts: a Tag (name of the intent), Patterns (things a user might
type or utter), and Responses (what the bot replies back). The pool is created for
conversation banter.

We use a 70% cosine similarity score to decide whether to use the intent response from
our pool of intents, or to send the user input to the next higher tier, which could be a
human in a business use case, but for our case is a GPT-2 conversational bot with
customized parameters:

https://iiusatechai.com/demos/demobot/mapper

A question like “Who are you?” is a 100% match for the name intent in our pool, and one

of the five intent responses are randomly selected, for this case “My name is Reddy”:

User: Who are you?

[**result_table: (1.0000) My name is Reddy] [**result_GPT: Bot: I am the one who
knocks. Reference question for table lookup: who are you]

[n.g. The GPT-2 response comes from a line in the Breaking Bad series.]

A variation that is less than a 100% match but still above our 70% threshold is “Your
name is?”:

User: Your name is?

https://en.wikipedia.org/wiki/GPT-2
https://iiusatechai.com/demos/demobot/mapper

[**result_table: (0.8660) I'm Reddy] [**result_GPT: Bot: I am the one who knocks.
Reference question for table lookup: what is your name]

A variation that results in only a 61% match is “How do you like to be called?”:

User: How do you like to be called?

[**result_GPT-2: Bot: I am the one who knocks.] [**result_table: (0.6172) In your
head, maybe. Reference question for table lookup: where do you like to go]

The results have been reordered by the bot to put the better response first.

5. The open-source IIUSA intent editor

You can download our freely available intent editor to create and edit intent files in
JSON format:

https://iiusatech.com/intent/

Figure 5 shows a screenshot of the editor, Object Pascal edition. See farther down for
the Python edition.

https://www.w3resource.com/JSON/structures.php
https://iiusatech.com/intent/

Figure 5: The IIUSA Intent Editor – Object Pascal edition.

The Object Pascal editor is an application (app) for Windows 32-bit and 64-bit operating
systems, as well as Apple OSX 64-bit (Intel processors only at this point).
Implementations are slated in the future for Android and iOS apps. The code is written
in Object Pascal and is meant to be built with Embarcadero’s RAD Studio Delphi, of
which there is a free community edition for non-commercial use (see below for
download link).

To load an existing intent pool, such as the intents.json file introduced in the previous
section, click the Open button, choose the file and load it. You can then add, edit, and
delete tags, as well as create and edit groups of patterns and responses.

To create a new intent file, start with the default empty pool or click the Reset button,
and Add new tags, patterns, and responses. You can save the intents in a JSON file
and reload it at any time to continue working on it.

https://en.wikipedia.org/wiki/Object_Pascal
https://www.embarcadero.com/products/rad-studio

The Help button opens your default browser and takes you to a help file on the IIUSA
Website, and the About button tells you what version of the app you are using. That’s all
there is to it!

To download the apps or if you would like to tinker with the Object Pascal source code
or maybe contribute to the project, it is open source and available on GitHub:

https://github.com/IIUSA/intents-editor-app

Keep in mind we do not provide support on learning how to use RAD Studio Delphi or
the details of the Object Pascal language. In addition, to produce an OSX standalone
executable you will have to provide your own Apple Developer Certificate. You can
download the community version of the development system we use here:

https://www.embarcadero.com/products/delphi/starter/free-download

If you prefer a Python intent editor, have a look here for an entirely different codebase:

https://iiusatech.com/downloads/intent-editor/simplepython/

The screenshot in Figure 6 shows the editor layout.

Figure 6: The IIUSA Intent Editor – Python edition.

By default, the editor loads Data/intents.json. You can load another file and also save
your changes through the File menu.

After the program opens, start by selecting an intent from the Intents dropdown. Then
move to the Patterns and Responses dropdowns to view the existing patterns and
responses.

https://github.com/IIUSA/intents-editor-app
https://developer.apple.com/support/certificates/
https://www.embarcadero.com/products/delphi/starter/free-download
https://iiusatech.com/downloads/intent-editor/simplepython/

Use the three textboxes and the three Add buttons to add intents, patterns, and
responses. Use the three Delete buttons to delete intents, patterns, and responses.

Currently there is no Edit function: if you want to change a pattern or response, you will
need to add the new one and delete the old. The intent names are not editable.

6. Putting it all together: a working example

You can try the elements in this article with the Conversational AI chatbot on the IIUSA
demo page:

https://iiusatech.com/demos/

You will need to use a few tricks described below to expose hidden elements.

The chatbot as shown on the page is a pass-through to a GPT-2 model with default
parameters on a huggingface.co download of the microsoft/DialoGPT-large model. You
can invoke the intent mapper and filter 70% or greater cosine similarity matches by
preceding an utterance with “qaz ” (this is not case sensitive; note the space after

qaz).

The score shows the cosine similarity, which is 100% for the example below. Try a few
variations to see how the similarity score changes with the qaz hidden keyword like:

You: What is your name?

Bot: I’m not sure what you mean

You: qaz What is your name?

Bot: My name is Reddy [100%]

You: qaz Your name is?

Bot: My name is Reddy [87%]

The qaz hidden keyword returns the best match 70% or greater for the intent mapper.

Lesser matches are passed back to GPT-2. The hidden keyword “qae ” (case

insensitive) forces the intent mapper response to be taken, even if worse than 70%:

You: How do you like to be called?

Bot: I like to be called a lot.

You: qwe How do you like to be called?

Bot: In a galaxy far, far away. [67%]

7. Conclusion

https://iiusatech.com/demos/
https://huggingface.co/
https://huggingface.co/microsoft/DialoGPT-large

Intents capture a basic pattern-response characteristic of conversational chatbots.
Chatbot platforms have built-in intent editors, but if you are creating intents outside of
the platform, you will need a way to create and store intents.

Use the IIUSA Intent Editor to create intents for your own chatbot. The code is open
source and you can use and modify it as you wish.

